

Welcome to Quepy’s documentation!

 __ _ _ _ ___ _ __ _ _
 / _` | | | |/ _ \ '_ \| | | |
| (_| | |_| | __/ |_) | |_| |
 __, |__,_|___| .__/ __, |
 |_| |_| |___/

What’s quepy?

Quepy is a python framework to transform natural language questions to queries
in a database query language. It can be easily customized to different kinds of
questions in natural language and database queries. So, with little coding you
can build your own system for natural language access to your database.

Currently Quepy provides support for
Sparql [http://www.w3.org/TR/rdf-sparql-query/] and
MQL [http://www.freebase.com/]
query languages.
We plan to extended it to other database query languages.

Community

	Email us to quepyproject@machinalis.com

	Join our mailing list [http://groups.google.com/group/quepy]

An example

To illustrate what can you do with quepy, we included an example application to
access DBpedia [http://dbpedia.org/] contents via their sparql endpoint.

You can try the example online here: Online demo [http://quepy.machinalis.com/]

Or, you can try the example yourself by doing:

python examples/dbpedia/main.py "Who is Tom Cruise?"

And it will output something like this:

SELECT DISTINCT ?x1 WHERE {
 ?x0 rdf:type foaf:Person.
 ?x0 rdfs:label "Tom Cruise"@en.
 ?x0 rdfs:comment ?x1.
}

Thomas Cruise Mapother IV, widely known as Tom Cruise, is an...

The transformation from natural language to sparql is done by first using a
special form of regular expressions:

person_name = Group(Plus(Pos("NNP")), "person_name")
regex = Lemma("who") + Lemma("be") + person_name + Question(Pos("."))

And then using and a convenient way to express semantic relations:

person = IsPerson() + HasKeyword(person_name)
definition = DefinitionOf(person)

The rest of the transformation is handled automatically by the framework to
finally produce this sparql:

SELECT DISTINCT ?x1 WHERE {
 ?x0 rdf:type foaf:Person.
 ?x0 rdfs:label "Tom Cruise"@en.
 ?x0 rdfs:comment ?x1.
}

Using a very similar procedure you could generate and MQL query for the same question
obtaining:

[{
 "/common/topic/description": [{}],
 "/type/object/name": "Tom Cruise",
 "/type/object/type": "/people/person"
}]

Installation

You need to have installed numpy [http://numpy.scipy.org/].
Other than that, you can just type:

pip install quepy

You can get more details on the installation here:

http://quepy.readthedocs.org/en/latest/installation.html

Contents

	Installation
	Dependencies

	From pip

	From source code

	Checking the installation

	Set up the POS tagger

	Application Tutorial
	Selected Questions

	Starting a quepy project

	Configuring the application

	Defining the regex

	Defining the domain specific language

	Using the application

	Library Reference
	Main API

	Domain Specific Language

	Parsing

	NLTK Tagger

	Expression

	Generation

	MQL Generation

	Sparql Generation

	Dot Generation

	Important Concepts
	Part of Speech tagset

	Keywords

	Particles

Indices and tables

	Index

	Module Index

	Search Page

Installation

Dependencies

	refo [http://github.com/machinalis/refo]

	nltk [http://nltk.org/] - if you intend to use nltk tagger

	SPARQLWrapper [http://pypi.python.org/pypi/SPARQLWrapper] if you intend to use the examples

	graphviz [http://www.graphviz.org/] if you intend to visualize your queries

From pip

If you have pip installed you can run:

$ pip install quepy

then Checking the installation

From source code

Download the GIT repository from Github [https://github.com/machinalis/quepy] running:

$ git clone https://github.com/machinalis/quepy.git

run the install script doing:

$ cd quepy
$ sudo python setup.py install

and then Checking the installation

Checking the installation

To check if quepy was successfully installed run:

$ quepy --version

and you should obtain the version number.

Set up the POS tagger

After that you need to download the backend’s POS tagger. It’s ok if you don’t
know what that is, it’s safe to treat it like a black box.
Quepy uses nltk [http://nltk.org/].

To set up quepy to be able to use nltk [http://nltk.org/] type:

$ quepy nltkdata /some/path/you/find/convenient

Also, every time you start a new app or use one, like the dbpedia example,
you should configure settings.py to point to the path you chose.

Application Tutorial

Note

The aim of this tutorial is to show you how to build a custom natural
language interface to your own database using an example.

To illustrate how to use quepy as a framework for natural language interface
for databases, we will build (step by step) an example application to access
DBpedia [http://dbpedia.org/].

The finished example application can be tried online here:
Online demo [http://quepy.machinalis.com/]

The finished example code can be found here:
Code [https://github.com/machinalis/quepy/tree/master/examples/dbpedia/dbpedia]

The first step is to select the questions that we want to be answered with
dbpedia’s database and then we will develop the quepy machinery to transform
them into SPARQL queries.

Selected Questions

In our example application, we’ll be seeking to answer questions like:

Who is <someone>, for example:

	Who is Tom Cruise?

	Who is President Obama?

What is <something>, for example:

	What is a car?

	What is the Python programming language?

List <brand> <something>, for example:

	List Microsoft software

	List Fiat cars

Starting a quepy project

To start a quepy project, you must create a quepy application. In our
example, our application is called dbpedia, and we create the
application by running:

$ quepy.py startapp dbpedia

You’ll find out that a folder and some files where created.
It should look like this:

$ cd dbpedia
$ tree .

.
├── dbpedia
│ ├── __init__.py
│ ├── parsing.py
│ ├── dsl.py
│ └── settings.py
└── main.py

1 directory, 4 files

This is the basic structure of every quepy project.

	dbpedia/parsing.py: the file where you will define the regular expressions
that will match natural language questions and transform them into an
abstract semantic representation.

	dbpedia/dsl.py: the file where you will define the domain specific language
of your database schema. In the case of SPARQL, here you will be specifing
things that usually go in the ontology: relation names and such.

	dbpedia/settings.py: the configuration file for some aspects of the
installation.

	main.py: this file is a optional kickstart point where you can have all the
code you need to interact with your app. If you want, you can safely remove
this file.

Configuring the application

First make sure you have already downloaded the necesary
data for the nltk tagger [http://nltk.org/]. If not check the
installation section.

Now edit dbpedia/settings.py and add the path to the nltk data to the
NLTK_DATA variable.
This file has some other configuration options, but we are not going to need
them for this example.

Also configure the LANGUAGE, in this example we’ll use sparql.

Note

What’s a tagger anyway?

A “tagger” (in this context) is a linguistic tool help analyze natural
language. It’s composed of:

	A tokenizer [http://en.wikipedia.org/wiki/Tokenization]

	A part-of-speech tagger [http://en.wikipedia.org/wiki/Part-of-speech_tagging]

	A lemmatizer [http://en.wikipedia.org/wiki/Lemmatisation]

If this is too much info for you, you can just treat it like a black box
and it will be enough in the Quepy context.

Defining the regex

Note

To handle regular expressions, quepy uses refo [https://github.com/machinalis/refo], an awesome library to work with regular expressions as objects.
You can read more about refo here [https://github.com/machinalis/refo].

We need to define the regular expressions that will match natural
language questions and transform them into an abstract semantic
representation. This will define specifically which questions the
system will be able to handle and what to do with them.

In our example, we’ll be editing the file dbpedia/parsing.py. Let’s
look at an example of regular expression to handle “What is ...”
questions. The whole definition would look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from refo import Group, Question
from quepy.dsl import HasKeyword
from quepy.parsing import Lemma, Pos, QuestionTemplate

from dsl import IsDefinedIn

class WhatIs(QuestionTemplate):
 """
 Regex for questions like "What is ..."
 Ex: "What is a car"
 """

 target = Question(Pos("DT")) + Group(Pos("NN"), "target")
 regex = Lemma("what") + Lemma("be") + target + Question(Pos("."))

 def interpret(self, match):
 thing = match.target.tokens
 target = HasKeyword(thing)
 definition = IsDefinedIn(target)
 return definition

Now let’s discuss this procedure step by step.

First of all, note that regex handlers need to be a subclass from
quepy.parsing.QuestionTemplate. They also need to define a class
attribute called regex with a refo regex.

Then, we describe the structure of the input question as a regular expression,
and store it in the regex attribute. In our example, this is done in Line 14:

regex = Lemma("what") + Lemma("be") + target + Question(Pos("."))

This regular expression matches questions of the form “what is X?”,
but also “what was X?”, “what were X?” and other variants of the verb
to be because it is using the lemma of the verb in the regular
expression. Note that the X in the question is defined by a variable
called target, that is defined in Line 13:

target = Question(Pos("DT")) + Group(Pos("NN"), "target")

The target variable matches a string that will be passed on to the
semantics to make part of the final query. In this example, we define
that we want to match optionally a determiner (DT) followed by a noun
(NN) labeled as “target”.

Note that quepy can access different levels of linguistic information
associated to the words in a question, namely their lemma and part of
speech tag. This information needs to be associated to questions by
analyzing them with a tagger.

Finally, if a regex has a successful match with an input question, the
interpret method will be called with the match. In Lines 16 to 22,
we define the interpret method, which specifies the semantics of a
matched question:

def interpret(self, match):
 thing = match.target.tokens
 target = HasKeyword(thing)
 definition = IsDefinedIn(target)
 return definition

In this example, the contents of the target variable are the argument
of a HasKeyword predicate. The HasKeyword predicate is part of the
vocabulary of our specific database. In contrast, the IsDefinedIn
predicate is part of the abstract semantics component that is
described in the next section.

Defining the domain specific language

Quepy uses an abstract semantics as a language-independent
representation that is then mapped to a query language. This allows
your questions to be mapped to different query languages in a
transparent manner.

In our example, the domain specific language is defined in the file
dbpedia/dsl.py.

Let’s see an example of the dsl definition. The predicate IsDefinedIn
was used in line 21 of the previous example:

definition = IsDefinedIn(target)

IsDefinedIn is defined in the dsl.py file as follows:

from quepy.dsl import FixedRelation

class IsDefinedIn(FixedRelation):
 relation = "rdfs:comment"
 reverse = True

This means that IsDefinedIn is a Relation where the subject has
rdf:comment. By creating a quepy class, we provide a further level of
abstraction on this feature which allows to integrate it in regular
expressions seamlessly.

The reverse part of the deal it’s not easy to explain, so bear with me.
When we say relation = "rdfs:comment" and definition = IsDefinedIn(target)
we are stating that we want

?target rdfs:comment ?definition

But how does the framework knows that we are not trying to say this?:

?definition rdfs:comment ?target

Well, that’s where reverse kicks in. If you set it to True (it’s
False by default) you get the first situation, if not you get the second
situation.

Using the application

With all that set, we can now use our application. In the main.py file of
our example there are some lines of code to use the application.

import quepy
dbpedia = quepy.install("dbpedia")
target, query, metadata = dbpedia.get_query("what is a blowtorch?")
print query

This code should be enough to obtain the following query:

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX quepy: <http://www.machinalis.com/quepy#>

SELECT DISTINCT ?x1 WHERE {
 ?x0 quepy:Keyword "blowtorch".
 ?x0 rdfs:comment ?x1.
}

Library Reference

	Main API

	Domain Specific Language

	Parsing

	NLTK Tagger

	Expression

	Generation

	MQL Generation

	Sparql Generation

	Dot Generation

Main API

Implements the Quepy Application API

	
class quepy.quepyapp.QuepyApp(parsing, settings)

	Provides the quepy application API.

	
get_queries(question)

	Given question in natural language, it returns
three things:

	the target of the query in string format

	the query

	metadata given by the regex programmer (defaults to None)

The queries returned corresponds to the regexes that match in
weight order.

	
get_query(question)

	Given question in natural language, it returns
three things:

	the target of the query in string format

	the query

	metadata given by the regex programmer (defaults to None)

The query returned corresponds to the first regex that matches in
weight order.

	
quepy.quepyapp.install(app_name)

	Installs the application and gives an QuepyApp object

Domain Specific Language

Domain specific language definitions.

	
class quepy.dsl.FixedDataRelation(data)

	Expression for a fixed relation. This is
“A is related to Data” through the relation defined in relation.

	
class quepy.dsl.FixedRelation(destination, reverse=None)

	Expression for a fixed relation. It states that “A is related to B”
through the relation defined in relation.

	
class quepy.dsl.FixedType

	Expression for a fixed type.
This captures the idea of something having an specific type.

	
class quepy.dsl.HasKeyword(data)

	Abstraction of an information retrieval key, something standarized used
to look up things in the database.

Parsing

	
exception quepy.parsing.BadSemantic

	Problem with the semantic.

	
class quepy.parsing.Lemma(tag)

	Predicate to check if a word has an specific lemma.

	
quepy.parsing.Lemmas(string)

	Returns a Predicate that catches strings
with the lemmas mentioned on string.

	
class quepy.parsing.Match(match, words, i=None, j=None)

	Holds the matching of the regex.

	
class quepy.parsing.Pos(tag)

	Predicate to check if a word has an specific POS tag.

	
quepy.parsing.Poss(string)

	Returns a Predicate that catches strings
with the POS mentioned on string.

	
class quepy.parsing.QuestionTemplate

	Subclass from this to implement a question handler.

	
interpret(match)

	Returns the intermediate representation of the regex.
match is of type quepy.regex.Match and is analogous to a python re
match. It contains matched groups in the regular expression.

When implementing a regex one must fill this method.

	
class quepy.parsing.Token(tag)

	Predicate to check if a word has an specific token.

	
quepy.parsing.Tokens(string)

	Returns a Predicate that catches strings
with the tokens mentioned on string.

	
class quepy.parsing.WordList(words)

	A list of words with some utils for the user.

NLTK Tagger

Tagging using NLTK.

	
quepy.nltktagger.run_nltktagger(string, nltk_data_path=None)

	Runs nltk tagger on string and returns a list of
quepy.tagger.Word objects.

Expression

This file implements the Expression class.

Expression is the base class for all the semantic representations in quepy.
It’s meant to carry all the information necessary to build a database query in
an abstract form.

By design it’s aimed specifically to represent a SPARQL query, but it should
be able to represent queries in other database languages too.

A (simple) SPARQL query can be thought as a subgraph that has to match into a
larger graph (the database). Each node of the subgraph is a variable and every
edge a relation. So in order to represent a query, Expression implements a
this subgraph using adjacency lists.

Also, Expression instances are meant to be combined with each other somehow
to make complex queries out of simple ones (this is one of the main objectives
of quepy).

To do that, every Expression has a special node called the head, which
is the target node (variable) of the represented query. All operations over
Expression instances work on the head node, leaving the rest of the
nodes intact.

So Expression graphs are not built by explicitly adding nodes and edges
like any other normal graph. Instead they are built by a combination of the
following basic operations:

	
	__init__: When a Expression is instantiated a single solitary

	node is created in the graph.

	
	decapitate: Creates a blank node and makes it the new head of the

	Expression. Then it adds an edge (a relation) linking
this new head to the old one. So in a single operation a
node and an edge are added. Used to represent stuff like
?x rdf:type ?y.

	
	add_data: Adds a relation into some constant data from the head

	
node of the Expression. Used to represent stuff like

?x rdf:label "John Von Neumann".

	
	merge: Given two Expressions, it joins their graphs preserving

	
every node and every edge intact except for their head
nodes.
The head nodes are merged into a single node that is the
new head and shares all the edges of the previous heads.
This is used to combine two graphs like this:

A = ?x rdf:type ?y
B = ?x rdf:label "John Von Neumann"

Into a new one:

A + B = ?x rdf:type ?y;
 ?x rdf:label "John Von Neumann"

You might be saying “Why?! oh gosh why you did it like this?!”.
The reasons are:

	It allows other parts of the code to build queries in a super
intuive language, like IsPerson() + HasKeyword("Russell").
Go and see the DBpedia example.

	You can only build connected graphs (ie, no useless variables in query).

	You cannot have variable name clashes.

	You cannot build cycles into the graph (could be a con to some, a
plus to other(it’s a plus to me))

	There are just 3 really basic operations and their semantics are defined
concisely without special cases (if you care for that kind of stuff
(I do)).

	
class quepy.expression.Expression

	
	
add_data(relation, value)

	Adds a relation to some constant value to the head of the
Expression.
value is recommended be of type:
- unicode
- str and can be decoded using the default encoding (settings.py)
- A custom class that implements a __unicode__ method.
- It can NEVER be an int.

You should not use this to relate nodes in the graph, only to add
data fields to a node.
To relate nodes in a graph use a combination of merge and decapitate.

	
decapitate(relation, reverse=False)

	Creates a new blank node and makes it the head of the
Expression. Then it adds an edge (a relation) linking the
the new head to the old one. So in a single operation a
node and an edge are added.
If reverse is True then the relation links the old head to
the new head instead of the opposite (some relations are not
commutative).

	
get_head()

	Returns the index (the unique identifier) of the head node.

	
iter_edges(node)

	Iterates over the pairs: (relation, index) which are the neighbors
of node in the expression graph, where:
- node is the index of the node (the unique identifier).
- relation is the label of the edge between the nodes
- index is the index of the neighbor (the unique identifier).

	
iter_nodes()

	Iterates the indexes (the unique identifiers) of the Expression nodes.

	
merge(other)

	Given other Expression, it joins their graphs preserving every
node and every edge intact except for the head nodes.
The head nodes are merged into a single node that is the new
head and shares all the edges of the previous heads.

	
quepy.expression.isnode(x)

	

Generation

Code generation from an expression to a database language.

	The currently supported languages are:

	
	MQL

	Sparql

	Dot: generation of graph images mainly for debugging.

	
quepy.generation.get_code(expression, language)

	Given an expression and a supported language, it
returns the query for that expression on that language.

MQL Generation

	
quepy.mql_generation.choose_start_node(e)

	Choose a node of the Expression such that no property leading to a data
has to be reversed (with !).

	
quepy.mql_generation.generate_mql(e)

	Generates a MQL query for the Expression e.

	
quepy.mql_generation.paths_from_root(graph, start)

	Generates paths from start to every other node in graph and puts it in
the returned dictionary paths.
ie.: paths_from_node(graph, start)[node] is a list of the edge names used
to get to node form start.

	
quepy.mql_generation.post_order_depth_first(graph, start)

	Iterate over the nodes of the graph (is a tree) in a way such that every
node is preceded by it’s childs.
graph is a dict that represents the Expression graph. It’s a tree too
beacuse Expressions are trees.
start is the node to use as the root of the tree.

	
quepy.mql_generation.safely_to_unicode(x)

	Given an “edge” (a relation) or “a data” from an Expression graph
transform it into a unicode string fitted for insertion into a MQL query.

	
quepy.mql_generation.to_bidirected_graph(e)

	Rewrite the graph such that there are reversed edges for every forward
edge.
If an edge goes into a data, it should not be reversed.

Sparql Generation

Sparql generation code.

	
quepy.sparql_generation.adapt(x)

	

	
quepy.sparql_generation.escape(string)

	

	
quepy.sparql_generation.expression_to_sparql(e, full=False)

	

	
quepy.sparql_generation.triple(a, p, b, indentation=0)

	

Dot Generation

Dot generation code.

	
quepy.dot_generation.adapt(x)

	

	
quepy.dot_generation.dot_arc(a, label, b)

	

	
quepy.dot_generation.dot_attribute(a, key)

	

	
quepy.dot_generation.dot_fixed_type(a, fixedtype)

	

	
quepy.dot_generation.dot_keyword(a, key)

	

	
quepy.dot_generation.dot_type(a, t)

	

	
quepy.dot_generation.escape(x, add_quotes=True)

	

	
quepy.dot_generation.expression_to_dot(e)

	

Important Concepts

Part of Speech tagset

The POS tagset used by quepy it’s the Penn Tagset as defined
here [http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html].

Keywords

When doing queries to a database it’s very common to have a unified way to obtain
data from it. In quepy we called it keyword.
To use the Keywords in a quepy project you must first configurate what’s the
relationship that you’re using. You do this by defining the class attribute
of the quepy.dsl.HasKeyword.

For example, if you want to use rdfs:label as Keyword relationship you do:

from quepy.dsl import HasKeyword
HasKeyword.relation = "rdfs:label"

If your Keyword uses language specification you can configure this by doing:

HasKeyword.language = "en"

Quepy provides some utils to work with Keywords, like
quepy.dsl.handle_keywords(). This function will take some
text and extract IRkeys from it. If you need to define some sanitize
function to be applied to the extracted Keywords, you have define the
staticmethod sanitize.

For example, if your IRkeys are always in lowercase, you can define:

HasKeyword.sanitize = staticmethod(lambda x: x.lower())

Particles

It’s very common to find patterns that are repeated on several regex so quepy
provides a mechanism to do this easily. For example, in the DBpedia example,
a country it’s used several times as regex and it has always the same interpretation.
In order to do this in a clean way, one can define a Particle by doing:

class Country(Particle):
 regex = Plus(Pos("NN") | Pos("NNP"))

 def interpret(self, match):
 name = match.words.tokens.title()
 return IsCountry() + HasKeyword(name)

this ‘particle’ can be used to match thing in regex like this:

regex = Lemma("who") + Token("is") + Pos("DT") + Lemma("president") + \
 Pos("IN") + Country() + Question(Pos("."))

and can be used in the interpret() method just as an attribut of the match object:

def interpret(self, match):
 president = PresidentOf(match.country)

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 quepy	

 	
 	
 quepy.dot_generation	

 	
 	
 quepy.dsl	

 	
 	
 quepy.expression	

 	
 	
 quepy.generation	

 	
 	
 quepy.mql_generation	

 	
 	
 quepy.nltktagger	

 	
 	
 quepy.parsing	

 	
 	
 quepy.quepyapp	

 	
 	
 quepy.sparql_generation	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	
 	adapt() (in module quepy.dot_generation)

 	(in module quepy.sparql_generation)

 	
 	add_data() (quepy.expression.Expression method)

B

 	
 	BadSemantic

C

 	
 	choose_start_node() (in module quepy.mql_generation)

D

 	
 	decapitate() (quepy.expression.Expression method)

 	dot_arc() (in module quepy.dot_generation)

 	dot_attribute() (in module quepy.dot_generation)

 	
 	dot_fixed_type() (in module quepy.dot_generation)

 	dot_keyword() (in module quepy.dot_generation)

 	dot_type() (in module quepy.dot_generation)

E

 	
 	escape() (in module quepy.dot_generation)

 	(in module quepy.sparql_generation)

 	
 	Expression (class in quepy.expression)

 	expression_to_dot() (in module quepy.dot_generation)

 	expression_to_sparql() (in module quepy.sparql_generation)

F

 	
 	FixedDataRelation (class in quepy.dsl)

 	
 	FixedRelation (class in quepy.dsl)

 	FixedType (class in quepy.dsl)

G

 	
 	generate_mql() (in module quepy.mql_generation)

 	get_code() (in module quepy.generation)

 	
 	get_head() (quepy.expression.Expression method)

 	get_queries() (quepy.quepyapp.QuepyApp method)

 	get_query() (quepy.quepyapp.QuepyApp method)

H

 	
 	HasKeyword (class in quepy.dsl)

I

 	
 	install() (in module quepy.quepyapp)

 	interpret() (quepy.parsing.QuestionTemplate method)

 	
 	isnode() (in module quepy.expression)

 	iter_edges() (quepy.expression.Expression method)

 	iter_nodes() (quepy.expression.Expression method)

L

 	
 	Lemma (class in quepy.parsing)

 	
 	Lemmas() (in module quepy.parsing)

M

 	
 	Match (class in quepy.parsing)

 	
 	merge() (quepy.expression.Expression method)

P

 	
 	paths_from_root() (in module quepy.mql_generation)

 	Pos (class in quepy.parsing)

 	
 	Poss() (in module quepy.parsing)

 	post_order_depth_first() (in module quepy.mql_generation)

Q

 	
 	quepy.dot_generation (module)

 	quepy.dsl (module)

 	quepy.expression (module)

 	quepy.generation (module)

 	quepy.mql_generation (module)

 	
 	quepy.nltktagger (module)

 	quepy.parsing (module)

 	quepy.quepyapp (module)

 	quepy.sparql_generation (module)

 	QuepyApp (class in quepy.quepyapp)

 	QuestionTemplate (class in quepy.parsing)

R

 	
 	run_nltktagger() (in module quepy.nltktagger)

S

 	
 	safely_to_unicode() (in module quepy.mql_generation)

T

 	
 	to_bidirected_graph() (in module quepy.mql_generation)

 	Token (class in quepy.parsing)

 	
 	Tokens() (in module quepy.parsing)

 	triple() (in module quepy.sparql_generation)

W

 	
 	WordList (class in quepy.parsing)

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to Quepy's documentation!

 		Installation

 		Dependencies

 		From pip

 		From source code

 		Checking the installation

 		Set up the POS tagger

 		Application Tutorial

 		Selected Questions

 		Starting a quepy project

 		Configuring the application

 		Defining the regex

 		Defining the domain specific language

 		Using the application

 		Library Reference

 		Main API

 		Domain Specific Language

 		Parsing

 		NLTK Tagger

 		Expression

 		Generation

 		MQL Generation

 		Sparql Generation

 		Dot Generation

 		Important Concepts

 		Part of Speech tagset

 		Keywords

 		Particles

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

